Availability of Model Code from Published Computational Physiology Models

Graham Kim, John Gennari

Biomedical and Health Informatics University of Washington

COMBINE 2018, Boston - Oct. 12, 2018

Clinical Data + Models

- Abundance of existing clinical data
- Existing computational physiology models
- Using clinical data for patientspecific modeling

Writing a Dissertation

Making Everything Easier!"

Learn to:

- Choose a winning topic and finalise your research question
- Find information on or offline, or collect yourown empirical data
- Whip the final version of your work into shape
- Approach the whole project with confidence

Dr Carrie Winstanley Principal Lecturer in Education,

Curated Model Repositories

- BioModels Database
- Physiome Model Repository
- But what about model publications in the literature?

What percentage of model publications make model code available?

Modelling the Response of FOXO Transcription Factors to Multiple Post-Translational Modifications Made by Agei...

Graham R. Smith, Daryl P. Shanley

Supporting Information

Abstract

Introduction

Methods

Results

Discussion

Supporting Information

Acknowledgments

Author Contributions

References

Reader Comments (0)

Media Coverage (0)

Figures

Dataset_S3.xml

<?xml version="1.0" encoding="UTF-8"?> <model id="Foxo_PTMs" name="Foxo_PTMs"> <listOfUnitDefinitions> <unitDefinition id="volume"> <listOfUnits> <unit kind="litre" scale="-3"/> </listOfUnits> </unitDefinition> <unitDefinition id="substance"> <listOfUnits> <unit kind="item"/> </listOfUnits> </unitDefinition> <unitDefinition id="time"> <listOfUnits> <unit kind="second" multiplier="60"/> </listOfUnits> </unitDefinition> </listOfUnitDefinitions> <listOfCompartments> <compartment id="extracellular" size="8.3e-12"/> </listOfCompartments> <listOfSpecies>


```
<sbml xmlns="http://www.sbml.org/sbml/level2/version3" level="2" version='
      <compartment id="cellsurface" size="6.4e-14" outside="extracellular"
      <compartment id="cytoplasm" size="1.65e-11" outside="cellsurface"/>
      <compartment id="nucleus" size="5e-13" outside="cytoplasm"/>
      <compartment id="dnabound" size="1e-13" outside="nucleus"/>
     <species id="null" compartment="cytoplasm" initialAmount="0" hasOnly</pre>
     <species id="degr_Foxo1" compartment="cytoplasm" initialAmount="0" h</pre>
     <species id="cytoplasm_Foxo1_Pa0_pUb0" compartment="cytoplasm" initi</pre>
                                                       2
                                                              download
```

- PubMed
- MeSH terms "Models, Biological"[MH] AND "Computer Simulation"[MH] AND Humans[Mesh]
- Articles published up to May 11, 2018
- Excluded review articles and meta-analysis

Search

- Total models retrieved: 6,909
- Excluded:
 - Non-computational models (e.g., simple mannequin)
 - Studies using previously published models
 - Statistical models without biological mechanism
 - Image/signal processing models

Results

- Sampled for analysis: 50
 - Biological domain
 - Modeling paradigm
 - Modeling language
 - Model code availability

Results

18

16

14

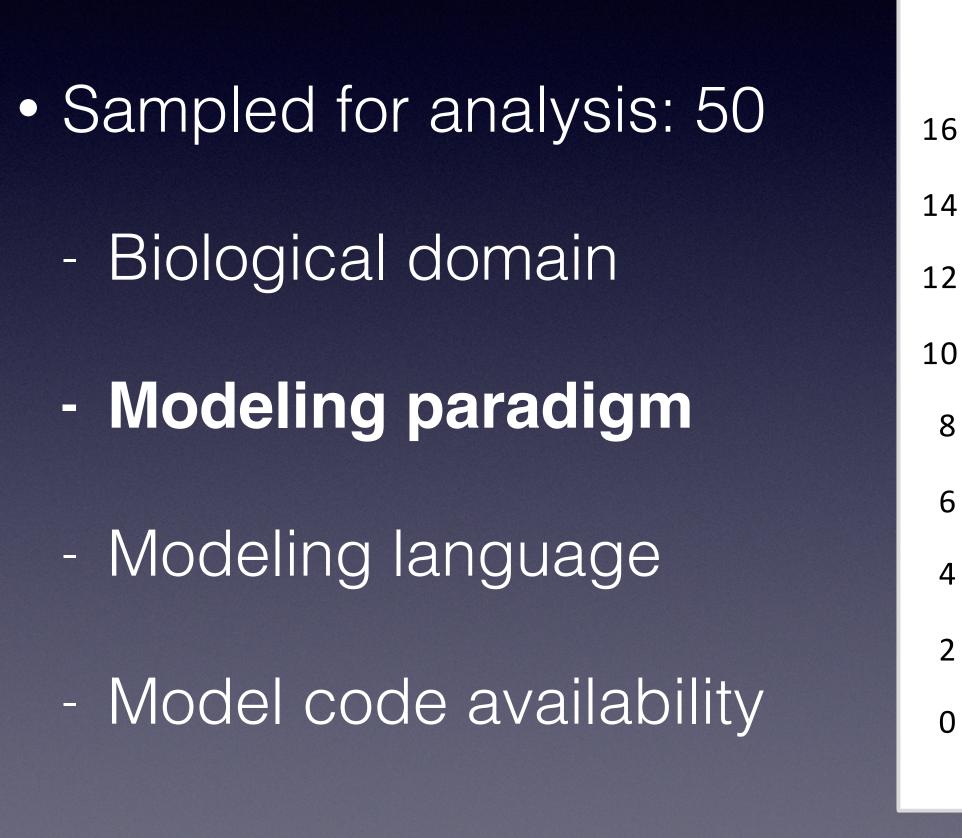
12

10

8

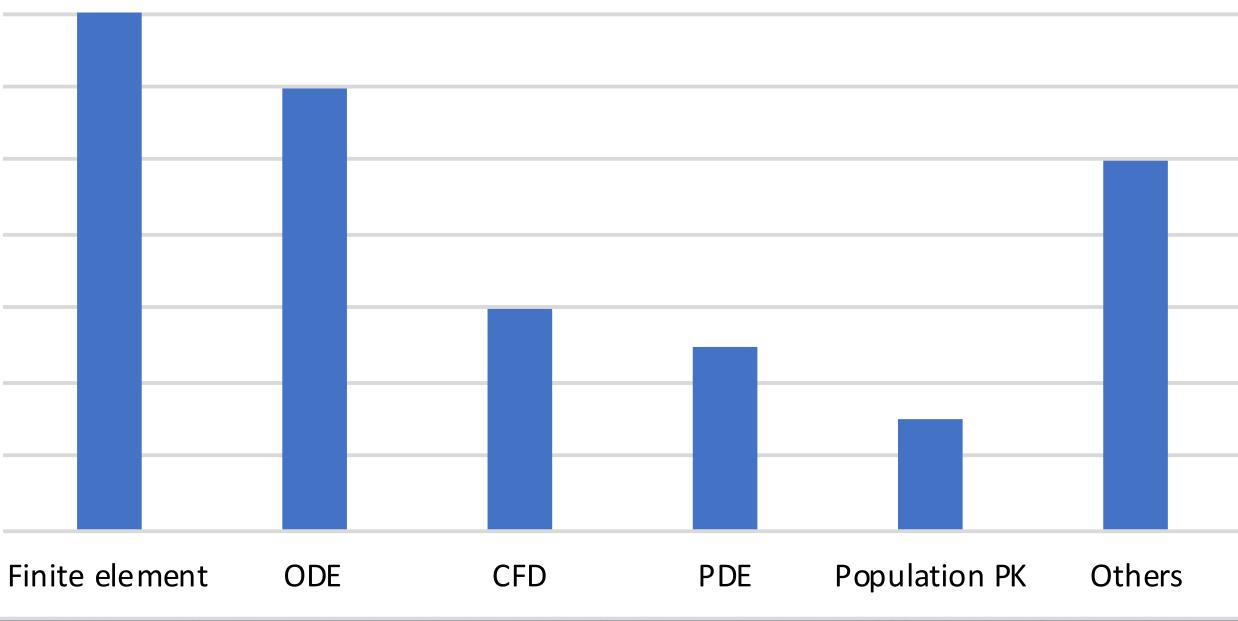
6

Δ


 $\mathbf{0}$

• Sampled for analysis: 50

- Biological domain
- Modeling paradigm
- Modeling language
- Model code availability



2

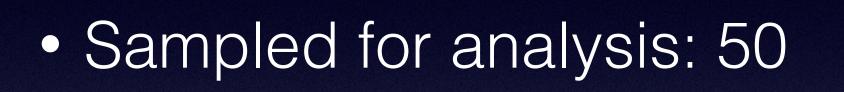
Results

Modeling Paradigm

18

16

14


12

10

8

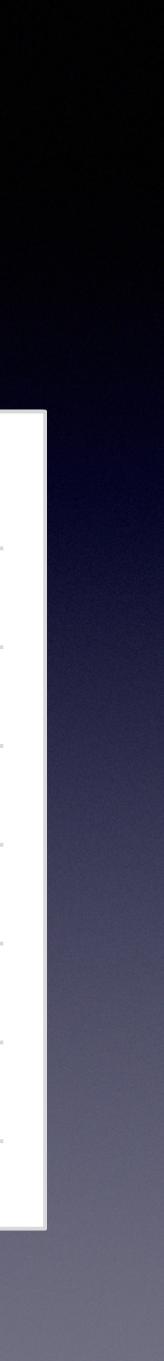
6

 $\mathbf{0}$

- Biological domain
- Modeling paradigm
- Modeling language
- Model code availability

Results

Modeling Language


 Sampled for analysis: 50 	60 —
- Biological domain	50 —
	40 —
- Modeling paradigm	30 —
- Modeling language	20 —
	10 —
- Model code availability	0 —

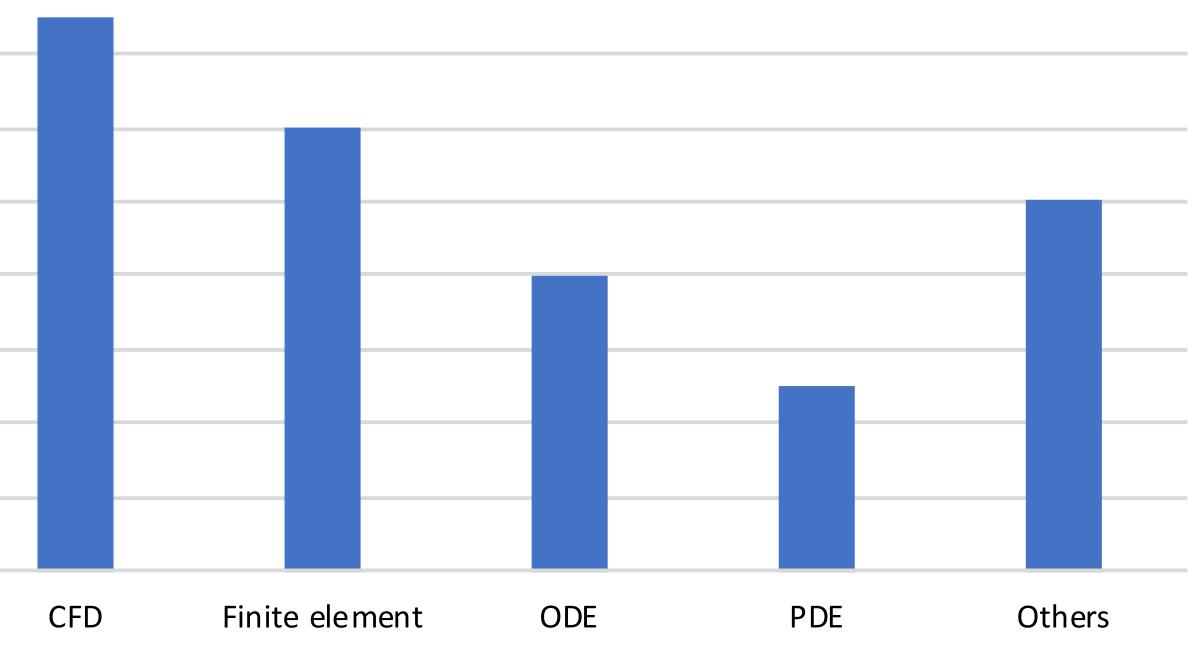
Results

Model Code Availability

Code available

Code not available

Search - Cardiovascular


- PubMed
- MeSH terms "Models, Cardiovascular" [MH] AND "Computer Simulation"[MH] AND Humans[Mesh]
- Articles published up to May 4, 2018
- Excluded review articles and meta-analysis

- Total models retrieved: 1,111
- Excluded:
 - Non-computational models
 - Studies using previously published models
 - Statistical models without biological mechanism
 - Image/signal processing models

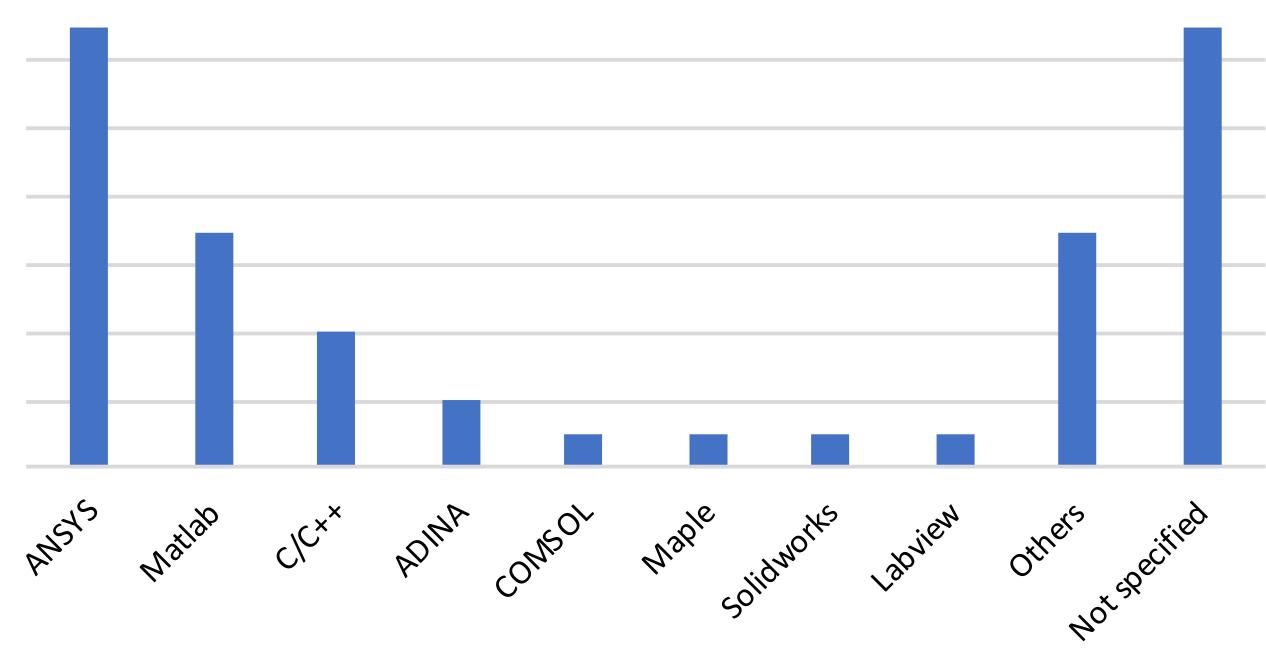
- Sampled for analysis: 50
 - Modeling paradigm
 - Modeling language
 - Model code availability

Sampled for analysis: 50
 Modeling paradigm
 Modeling language
 Model code availability

Modeling Paradigm

14

12

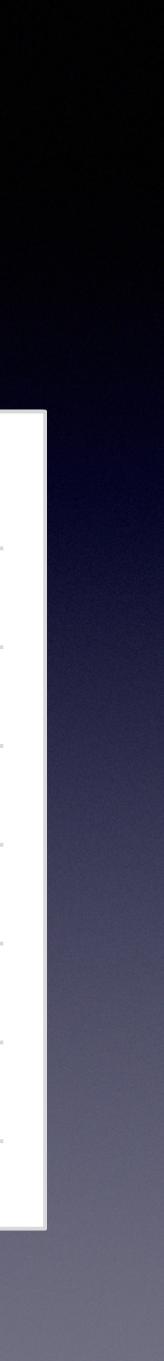

10

8

• Sampled for analysis: 50

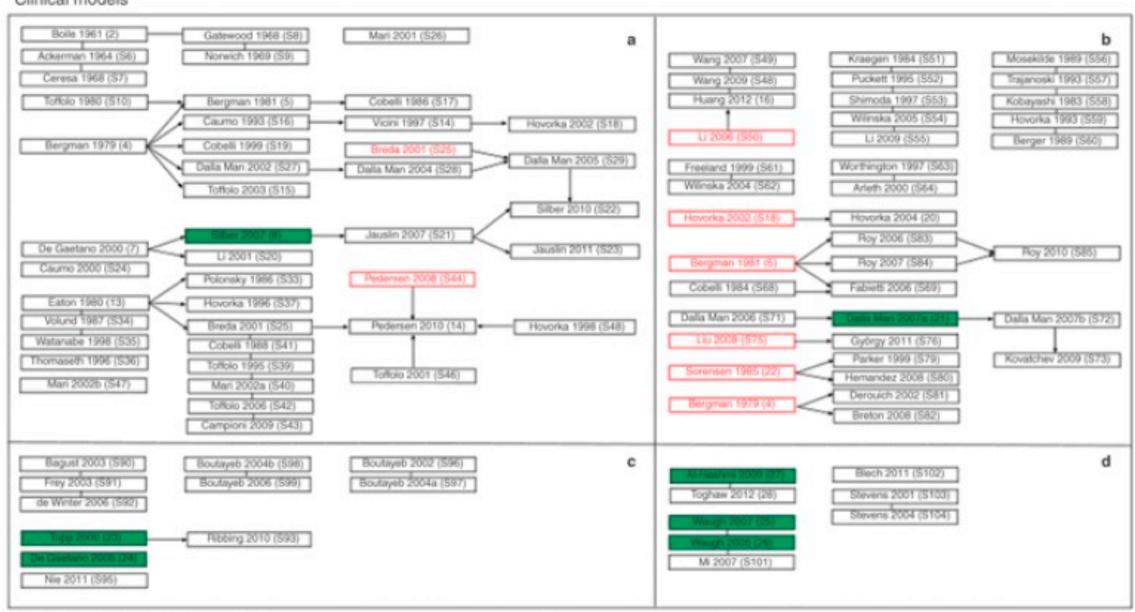
- Modeling paradigm
- Modeling language
- Model code availability

Modeling Language


- Campled far analysis. 50	60 —
 Sampled for analysis: 50 	50
- Modeling paradigm	40 —
Madalina languaga	30
- Modeling language	20 —
- Model code availability	10 —
	0 —

Model Code Availability

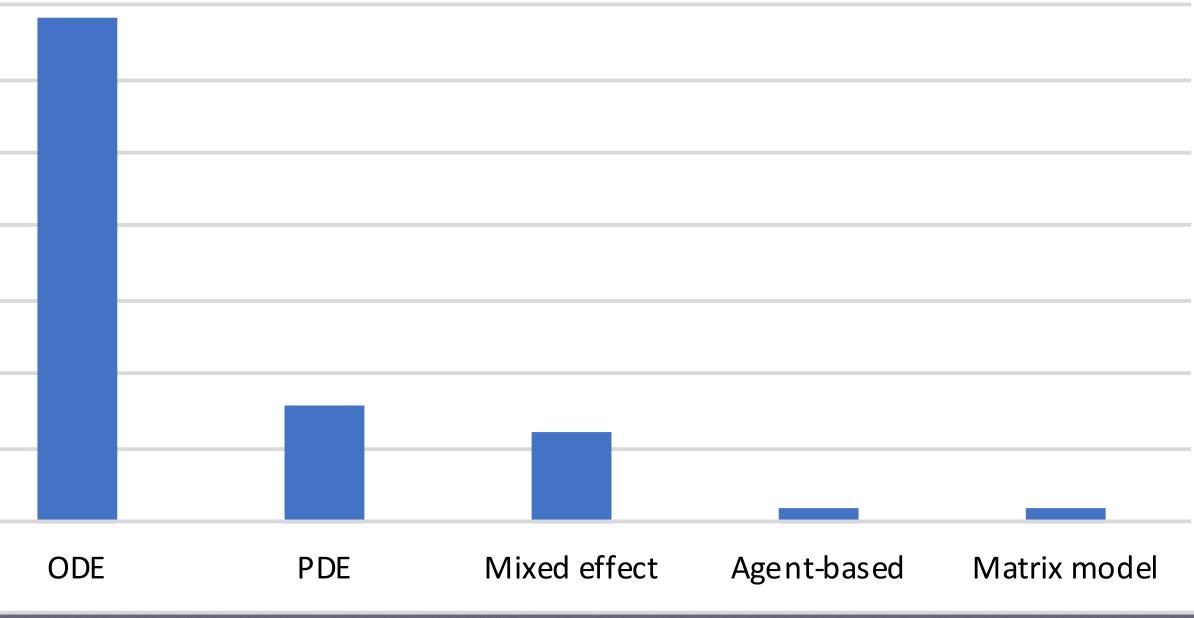
Code available


Code not available

- The impact of mathematical modeling on the understanding of diabetes and related complications by Ajmera, et al. 2013
- ~200 total models reviewed in this paper
- 96 model publications listed as "Clinical Models"

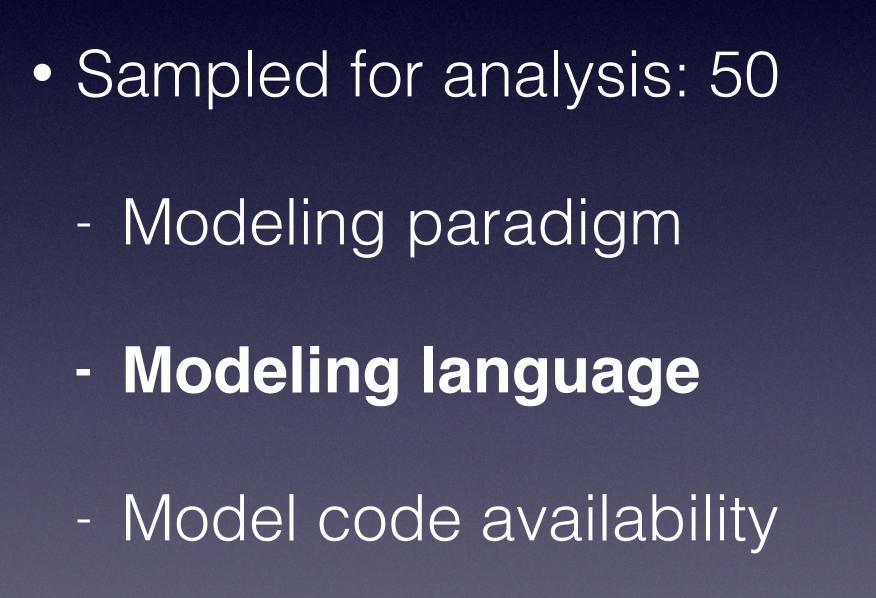
Search - Diabetes

inical model

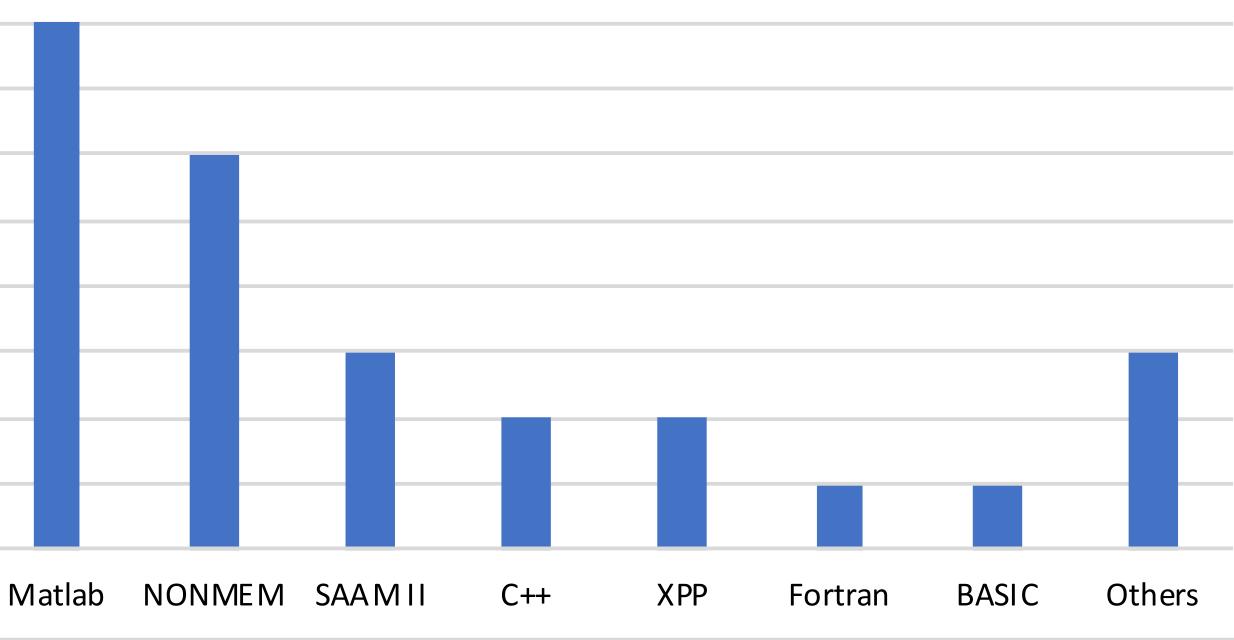

- Sampled for analysis: 50
 - Modeling paradigm
 - Modeling language
 - Model code availability

Results - Diabetes

• Compled for analysis, 50	40 —
 Sampled for analysis: 50 	35 —
	30 —
- Modeling paradigm	25 —
	20 —
- Modeling language	15 —
	10 —
- Model code availability	5 —


Results - Diabetes

Modeling Paradigm



8

Results - Diabetes

Modeling Language

 Sampled for analysis: 50 	60 —
Madalina naradiam	50 —
- Modeling paradigm	40 —
- Modeling language	30 —
	20 —
- Model code availability	10 —
	0 —


Results - Diabetes

Model Code Availability

Cada available	Cada not available

Code available

Code not available

A PHYSIOLOGIC MODEL OF GLUCOSE METABOLISM IN MAN AND ITS USE TO DESIGN AND ASSESS IMPROVED INSULIN THERAPIES FOR DIABETES YOL.1

bу

JOHN THOMAS SORENSEN

B.S., University of California, Berkeley

(1978)

SUBMITTED TO THE DEPARTMENT OF CHEMICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

April 1985

©Massachusetts Institute of Technology 1985

APPENDIX A: Computer Source Program (Fortran 77)

```
DATA A, B, XN, H/.048229, .93141, 1., .0079378/
         DATA Y20R, GAMMA/6.3294, .57493/
         DATA XM1, XM2/.007968, .106495/
    PARAMETERS - CLUCACON MODEL
С
C
         GNMCR=0.910
         VGN=VVIB+VVIH+VVIP+VKI+VLI+VIP*0.1
С
         ENDIF
С
C
    INITIALIZE GLUCOSE MODEL
         IF (NEWDT.EQ.-1) THEN
C*** INPUT FASTING PERIPHERAL VENOUS BLOOD GLUCOSE CONC. (MG/DL)
         Y(6)=CONSTANT(20)/0.84
         Y(3) = Y(6) + PGUE/QVGP
         Y(4) = Y(3)
         Y (1) =Y (3) -BGU/QVGB
         Y(8) = Y(3) - GGU/QVGG
         Y(5) = (1.) / QVGL) * (QVGA*Y(3) + QVGG*Y(8) + HGPF - HGUF)
         \Upsilon(2) = \Upsilon(1) - (BGU*TMGB) / VIB
         Y(7) = Y(6) - (PGUF * TMGP) / VIP
        Y(9)=1.
        Y(17)=1.
        Y(21)=0.
С
         STORE BASAL VALUES FOR FUTURE COMPUTATIONS
        Y3F=Y(3)
        Y5F=Y(5)
        Y7E=Y(7)
С
С
    INITIALIZE INSULIN MODEL
C*** INPUT FASTING PERIPHERAL VENOUS PLASMA INSULIN CONC. (MU/L)
        Y(14) = CONSTANT(21)
        Y(11) = Y(14) / (1.-FICP)
        Y(10) = Y(11)
        Y(12)=Y(11)*(1.-FICK)
         Y(13) = (1./QVIL) * (QVIH*Y(11) - QVIB*Y(10) - QVIK*Y(12) - QVIP*Y(14))
        Y(16)=Y(11)
        Y(15) = Y(14) - ((QVIP*TMIP) / (VIP*.1)) * (Y(11) - Y(14))
        PIRF = (QVIL/(1.-FICL)) *Y(13) - QVIG*Y(16) - QVIA*Y(11)
         STORE BASAL VALUES FOR FUTURE COMPUTATIONS
С
        Y11F=Y(11)
        Y13F=Y(13)
        Y15F=Y(15)
```


An Integrated Glucose-Insulin Model to Describe Oral Glucose Tolerance Test Data in Healthy Volunteers

Dr Hanna E. Silber MSc Pharm 🔀, Dr Nicolas Frey PharmD, Dr Mats O. Karlsson PhD

First published: 07 March 2013 | https://doi.org/10.1177/0091270009341185 | Cited by: 25

The NONMEM code used to implement the flexible input model is presented as follow:

DEN1 = THETA(1)DEN2 = THETA(2) * EXP(ETA(2))DEN3 = THETA(3)DEN4 = THETA(4) * EXP(ETA(4))DEN5 = THETA(5) * EXP(ETA(5))DEN6 = THETA(6)DEN7 = THETA(7)DEN8 = THETA(8) * EXP(ETA(8))DEN9 = THETA(9)DEN10 = THETA(10)DEN11 = THETA(11)Q1=0 Q2=0 Q3=0 Q4=0 Q5=0 Q6=0 Q7=0 Q8=0 Q9=0 Q10=0 Q11=0 Q12=0 IF(TIME.LE.15) Q1=1 IF(TIME.GT.15.AND.TIME.LE.30) Q2=1 IF(TIME.GT.30.AND.TIME.LE.45) Q3=1 IF(TIME.GT.45.AND.TIME.LE.60) Q4=1 IF(TIME.GT.60.AND.TIME.LE.75) Q5=1 IF(TIME.GT.75.AND.TIME.LE.90) Q6=1 IF(TIME.GT.90.AND.TIME.LE.105) Q7=1 IF(TIME.GT.105.AND.TIME.LE.120) Q8=1 IF(TIME.GT.120.AND.TIME.LE.150) Q9=1 IF(TIME.GT.150.AND.TIME.LE.180) Q10=1 IF(TIME.GT.180.AND.TIME.LE.210) Q11=1 IF(TIME.GT.210.AND.TIME.LE.240) Q12=1 DEN=1+DEN1+DEN2+DEN3+DEN4+DEN5+DEN6+DE

Honorable Mention

• Gaetano, et al. (2008). Mathematical models of diabetes progression.

"The model's numerical integration, starting with given parameter values, has been implemented in a mixed Matlab (The MathWorks, 1994 – 2007) and C/C++ (GCC, Free Software Foundation) environment and is freely available as a service to academic users through the CNR IASI BioMatLab web site (18a)."

ß

This site can't be reached

The connection was reset.

Try:

- Checking the connection
- Checking the proxy and the firewall

ERR_CONNECTION_RESET

DETAILS

Reload

What percentage of model publications make model code available?

But wait, there's more!

 Even curated models in repositories don't have model code available in the publication!

A New Hope?

 Some of the more recent publications link to BioModels

"The COPASI file, allowing the model to be run and manipulated by others, is **included in the Supplemental Materials** and is also **deposited in the BioModels Database under model ID# MODEL1803300000.**"

–Diedrichs, et al. (2018). A data-entrained computational model for testing the regulatory logic of the vertebrate unfolded protein response.

Now what?

- Why is this?
 - Lazy modelers? Software corrosion? Publication culture?
- What can we do about it?
 - See John G. and Ion M.'s talks
 - Center for Reproducible Biomedical Modeling

Thank you!

John Gennari Brian Carlson Max Neal Dan Cook

Search Terms

- "Models, Biological" [MH] AND "Computer Simulation" [MH] AND Humans [Mesh] NOT Evaluation Studies[ptyp])
- Evaluation Studies[ptyp])

review[ptyp] NOT Meta-Analysis[ptyp] AND (Research Support, American Recovery and Reinvestment Act[ptyp] OR Research Support, NIH, Extramural[ptyp] OR Research Support, U S Gov't, Non P H S[ptyp] OR Research Support, U S Gov't, P H S[ptyp] OR Research Support, U.S. Government[ptyp] OR Research Support, Non U S Gov't[ptyp] OR Research Support, N I H, Intramural[ptyp] OR Validation Studies[ptyp] OR Comparative Study[ptyp] OR

 "Models, Cardiovascular" [MH] AND "Computer Simulation" [MH] AND Humans [Mesh] NOT review[ptyp] NOT Meta-Analysis[ptyp] AND (Research Support, American Recovery and Reinvestment Act[ptyp] OR Research Support, NIH, Extramural[ptyp] OR Research Support, U S Gov't, Non P H S[ptyp] OR Research Support, U S Gov't, P H S[ptyp] OR Research Support, U.S. Government[ptyp] OR Research Support, Non U S Gov't[ptyp] OR Research Support, N I H, Intramural[ptyp] OR Validation Studies[ptyp] OR Comparative Study[ptyp] OR